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Abstract 

 

The central goal of cognitive neuroscience is to understand how information is processed in the 

brain.  To accomplish this goal, researchers studying human cognition are increasingly relying 

on multi-voxel pattern analysis (MVPA); this method involves analyzing spatially distributed 

(multi-voxel) patterns of functional MRI activity, with the goal of decoding the information that 

is represented across the ensemble of voxels.  In this chapter, we describe the major subtypes of 

MVPA, we provide examples of how MVPA has been used to study neural information 

processing, and we highlight recent technical advances in MVPA.
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1. Introduction 

 

Cognitive neuroscience theories deal with information processing: What information is 

represented in different brain structures, how is this information transformed over time, and how 

is it used to guide behavior? Functional MRI (fMRI) constitutes a powerful tool for addressing 

these questions: While a subject performs a cognitive task, we can obtain estimates of local 

blood flow (a proxy for local neural processing) from tens of thousands of distinct 

neuroanatomical locations (voxels, or volumetric pixels), within a matter of seconds. 

 

Traditional univariate fMRI analysis methods have focused on characterizing how cognitive 

variables modulate the activity of individual brain voxels (or small clusters of voxels; e.g., 

Gonsalves and Cohen, 2010). The goal of this chapter is to describe a different approach to fMRI 

analysis that focuses on extracting information about a person’s cognitive state (i.e., a snapshot 

of the person’s current internal thought space) from spatially distributed, multi-voxel patterns of 

fMRI activity. This approach is referred to as multi-voxel pattern analysis (MVPA) (Haxby et 

al., 2001; Kamitani and Tong, 2005; Haynes & Rees, 2006; Norman, Polyn, Detre, & Haxby, 

2006; Pereira, Mitchell, & Botvinick, 2009). Over the past decade, this approach has become 

ubiquitous in fMRI research, and its adoption has led to novel discoveries about the brain bases 

of perception, attention, imagery and working memory, episodic memory, semantic knowledge, 

language processing, and decision making (see Rissman & Wagner, 2012; Tong and Pratte, 

2012).  

 

Given the goal of detecting the presence of a particular cognitive state in the brain, the primary 

advantage of MVPA methods over individual-voxel-based methods is increased sensitivity for 

detecting this information. Conventional fMRI analysis methods try to find voxels that show a 

statistically significant response to the experimental conditions. To increase sensitivity to a 

particular condition, these methods spatially average across voxels that respond significantly to 

that condition. Although this approach reduces noise, it also reduces signal in two important 

ways: First, voxels with weaker (i.e., non-significant) responses to a particular condition might 

carry some information about the presence/absence of that condition. Second, spatial averaging 

blurs out fine-grained spatial patterns that might discriminate between experimental conditions. 
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Like conventional methods, the MVPA approach also seeks to boost sensitivity by looking at the 

contributions of multiple voxels. However, to avoid the signal-loss issues mentioned above, 

MVPA does not routinely involve uniform spatial averaging of voxel responses. Instead, the 

MVPA approach uses a weighted average of responses, treating each voxel as a distinct source of 

information about the participant’s cognitive state. The technique finds ways to optimize these 

weights, and then aggregates this (possibly weak) information across voxels to derive a more 

precise sense of what the participant is thinking. The multi-voxel response can be thought of as a 

combinatorial code for representing distinctions between cognitive states (see Figure 1). Because 

MVPA analyses focus on high-spatial-frequency (and often idiosyncratic) patterns of response, 

they are typically conducted within individual subjects, although recent advances in data 

alignment procedures have paved the way for the expansion of classification analyses beyond the 

individual subject (Haxby et al., 2011; See Section 4. New Developments). 

 

-- [ Figure 1 here ] -- 

 

Broadly speaking, the term MVPA has come to encompass two distinct methods. The first 

method involves using pattern classification methods imported from machine learning to learn a 

mapping between multi-voxel brain states and cognitive state information. This approach flips 

standard univariate fMRI analysis on its head: Standard voxel-based analysis uses multiple 

regression to predict the activity of individual voxels, based on the participant’s cognitive state. 

By contrast, classification-based MVPA uses multiple regression to predict the participant’s 

cognitive state, based on the activity of multiple voxels.  The second major subtype of MVPA 

does not use pattern classifiers; rather, it examines the similarity structure of multi-voxel patterns 

(i.e., which patterns are similar to one another) and uses this similarity structure information to 

draw conclusions about what information is reflected in these patterns. 

 

In Section 2, we provide an overview of these two subtypes of MVPA. In Section 3, we illustrate 

how MVPA has been used to study information representation and processing in the brain. In 

Section 4, we discuss recent advances in MVPA that allow for finer-grained mappings between 
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brain activity and cognitive states within individuals, and also new methods for aligning and 

combining brain data across individuals.  

 

Importantly, while this chapter is focused on fMRI, we should emphasize that most of the 

MVPA methods described here can be applied to other imaging modalities as well (for 

applications to EEG and MEG data, see, e.g., Jafarpour, Horner, Fuentemilla, Penny, & Duzel, 

2013; for applications to direct neural recording data, see, e.g., Hung, Kreiman, Poggio, & 

DiCarlo, 2005).  

 

2. Mechanics of MVPA 

 

Here, we will review the basic procedures of MVPA. All pattern analyses start with 

preprocessing of the raw fMRI BOLD data, including temporal and spatial realignment, noise 

filtering, and z-scoring of the data (over time, within each voxel) within each run. Next, feature 

selection chooses which voxels will be included in the analysis. All voxels in the brain can be 

used, but it is often advantageous to limit the analysis to certain voxels. One way to select 

features is to limit the analysis to specific anatomical regions (e.g. Haxby et al., 2001 focused on 

ventral temporal cortex in their study of visual object processing). Univariate statistics used in 

conventional fMRI analysis (e.g., Mitchell et al., 2004) and newer multivariate “wrapper 

methods” (Guyon and Elisseeff, 2003) can also be used for feature selection (e.g., one can 

discard the voxels that — taken on their own — do the worst job of discriminating between 

conditions). Finally, pattern assembly involves sorting the data into discrete “brain patterns” 

corresponding to the pattern of activity across the selected voxels at a particular time in the 

experiment. Patterns can be assembled using the preprocessed fMRI signal for each trial or, 

alternatively, by using multiple regression to estimate the unique neural response in each voxel 

for each trial (Mumford, Turner, Ashby, & Poldrack, 2012). Brain patterns are labeled according 

to which cognitive state (or experiment condition, stimulus, response, etc.) generated the pattern; 

this labeling procedure needs to account for the fact that the hemodynamic response measured by 

the scanner is delayed and smeared out in time, relative to the instigating neural event. Once the 

patterns have been assembled, MVPA can proceed along two main branches of analysis: 
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classifier-based MVPA and pattern-similarity MVPA.  We will now discuss both methods in 

turn. 

 

2.1. Classifier-based MVPA 

 

There are two steps to classifier-based MVPA. The first step, classifier training, involves feeding 

a subset of labeled patterns into a multivariate pattern classification algorithm. Based on these 

patterns, the classification algorithm learns a function that maps between voxel activity patterns 

and cognitive states. As illustrated in Figure 2, brain patterns can be viewed as points in a 

multidimensional voxel space; the goal of the classifier is to find a decision boundary in this 

space that best separates the patterns associated with the to-be-discriminated cognitive states. 

 

-- [ Figure 2 here ] -- 

 

The second step is generalization testing: Given a new pattern of brain activity (not previously 

presented to the classifier), can the trained classifier correctly determine the cognitive state 

associated with that pattern?   

  

The most commonly used classifiers are linear classifiers, which derive a linear decision 

boundary between classes. At training, the classifier learns a weight for each voxel, plus an 

intercept term; collectively, these weights determine the equation of the hyperplane (in two 

dimensions, a line) that forms the decision boundary. At test, the classifier uses these weights 

(and intercept) to compute a weighted sum of voxel activity values, and it uses this weighted sum 

to determine whether the test pattern falls on one side or the other of the decision boundary. 

There are a wide range of linear classification algorithms; the main difference between these 

algorithms relates to which features of the data they use when modeling the data. The 

multidimensional clouds of data for each class can be characterized in terms of their mean value 

and also their covariance matrix. This matrix specifies the spread of the cloud along each voxel 

dimension (i.e., how tall/wide is the cloud) and also the covariance between each pair of 

dimensions (i.e., the tilt of the cloud). The simplest classifier is the minimum distance classifier 

(e.g., Haxby et al., 2001), which estimates the mean value for each class based on the training 
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data and then classifies new points based on their proximity to these means. However, Figure 2 

demonstrates how ignoring the covariance matrix can produce non-optimal decision boundaries.  

More complex linear classifiers (e.g., Fisher’s linear discriminant; Duda, Hart, & Stork, 2012) 

can converge on the optimal decision boundary by creating a more sophisticated model of the 

data: In addition to estimating the mean, they also model the class-conditional probability 

densities (i.e., they estimate the full covariance matrix within and between voxel dimensions for 

each class). Figure 2 shows how the boundary learned by a linear-discriminant classifier factors 

in the “tilt of the ellipse” for each data cloud. Nonlinear classifiers (e.g., k nearest neighbor, 

multilayer neural networks) can form even more complex decision boundaries.  

 

Classification of fMRI data is a challenging problem, for several reasons: First, the number of 

data points (brain patterns) that are available for training tends to be small relative to the number 

of parameters in the model. For example, Polyn, Natu, Cohen, & Norman (2005) trained a 

classifier on 450 total brain patterns (150 for each of three stimulus classes) per participant, 

where each brain pattern consisted of approximately 7,000 voxels. In this situation, the 

covariance matrix has millions of unique entries (corresponding to all of the voxels, plus all of 

the unique pairings of voxels); each of these entries is a parameter that needs to be estimated 

based on only a few hundred training patterns. Further adding to the complexity of this problem, 

the brain patterns are very noisy (i.e., the clouds are highly dispersed). In this kind of situation, 

where the data are noisy and the number of parameters being estimated by the classifier dwarfs 

the number of training patterns, classifiers are prone to overfitting the noise in the training data: 

That is, the classifier may learn idiosyncratic features of the training examples rather than the 

actual distinction between the classes, thereby leading to poor generalization.  

 

Overfitting is the main obstacle to achieving good fMRI classification. One way to combat 

overfitting is to collect more data, but there are practical limits on collecting more data per 

participant. In Section 4 of this chapter, we will discuss new developments in MVPA that allow 

us to obtain more data by combining across subjects. The other way to combat overfitting is to 

try to limit the complexity of the classifier. For example, Gaussian Naive Bayes classifiers 

(GNB; Pereira et al., 2009) simplify the modeling of the covariance matrix by treating the n 

dimensions of the data as independent (such that the off-diagonal elements of the covariance 
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matrix are zero), thus reducing the number of parameters to estimate from n2 to n. Support vector 

machines (SVMs; Cox and Savoy, 2003) achieve complexity control by defining the category 

boundary in terms of a small number of support vectors (i.e., training exemplars close to the 

decision boundary).  Another way to limit the number of free parameters is to limit the number 

of voxels used for classification (e.g., restricting classification of oriented gratings to low-level 

visual cortex, Kamitani and Tong, 2005; or restricting classification of faces and scenes to 

ventral temporal cortex, Kuhl, Rissman, Chun, & Wagner, 2011). This is a useful approach when 

there is a priori knowledge of strong selectivity for the classes in particular brain regions. 

 

An effective way to reduce the complexity of linear classifiers is to add a regularization 

parameter to the model that punishes undesirable properties of the solution (e.g. large weights on 

individual voxels). Common forms of regularization are L2 regularization, which penalizes the 

sum of squares of the voxel weights, and L1 regularization, which penalizes the absolute value of 

the weights. As the regularization parameter is increased, L2 regularization pulls in extreme 

voxel weights (resulting in a smoother distribution of weights), whereas L1 regularization causes 

some weights to be driven to zero (a sparser solution). In both cases, the regularization parameter 

limits the space of possible solutions, thereby reducing the flexibility of the classifier and 

reducing overfitting. 

 

Practically speaking, all of the above forms of complexity control (GNBs, SVMs, voxel 

reduction, and regularization) have been shown to improve generalization performance, relative 

to linear classifiers that do not incorporate complexity control. The only exception is when the 

number of voxels is very small or the number of training patterns is very large, at which point it 

becomes feasible to estimate the full covariance matrix. Importantly, with fMRI data, nonlinear 

classifiers virtually never outperform linear classifiers on generalization tests — the added 

flexibility of these classifiers leads to overfitting. 

 

2.2. Pattern-similarity MVPA 

 

The second major form of MVPA is pattern similarity analysis (e.g., Kriegeskorte, Mur, 

Bandettini, 2008a). Here, brain patterns are viewed as points in high-dimensional voxel space, 
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where the distance between points indicates the similarity of the patterns. Rather than specifying 

which features of the data to separate with a classifier, pattern similarity analysis summarizes the 

space using a matrix that records the distance between each pair of points. This matrix can be 

viewed as a neural “fingerprint” of the representational space. Although information about the 

exact positions of the points is lost, the information about similarity structure contained in the 

pairwise similarity matrix is highly diagnostic of what information is coded in that region (e.g., if 

items with similar shapes elicit similar neural patterns, but items with similar sizes do not, this 

indicates that the region is more sensitive to shape than size information).   

 

The final step in pattern-similarity MVPA is to compare the neurally derived similarity matrix to 

some other similarity matrix (e.g., to a matrix holding a cognitive model’s predictions about the 

conceptual similarity between stimuli). The comparison between these matrices is used to 

evaluate the quality of the model’s predictions. A key benefit of the pattern-similarity approach 

is that — in contrast to the pattern-classification approach outlined above — it is not necessary to 

explicitly specify (ahead of time) the dimensions of cognitive variance that are of interest.  

Rather, all of the requisite analyses can be carried out post-hoc (e.g., to see if an area represents 

the size of an object, look at whether objects that are similar in size gave rise to similar neural 

patterns).  

 

3. Applications of MVPA 

 

In this section, we will describe three common uses of multi-voxel pattern analysis: (1) 

classifier-based thought tracking, (2) classifier-based information mapping, and (3) information 

mapping based on pattern similarity. We will discuss the goals of each analysis and we will 

review some recent applications of each method.  

 

3.1. Classifier-based thought tracking 

 

The goal of the classifier-based thought tracking approach is to measure participants’ thoughts 

on a trial-by-trial basis, to characterize the dynamics of these thoughts, and to assess how they 

relate to behavior. This approach is used when the main concern is tracking a particular latent 
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cognitive state, and there is relatively less concern about how that cognitive state is represented 

in the brain (although this approach can be applied to specific regions of interest to localize 

cognitive representations).   

 

Compared to univariate methods, MVPA squeezes more information about the participant’s 

cognitive state out of each snapshot of fMRI data, thereby increasing the effective temporal 

resolution of fMRI analysis and making it possible to record trajectories of cognitive states over 

time. However, even with the added sensitivity of MVPA, not all cognitive states are equally 

“visible” to fMRI. In this situation, researchers often find it useful to take the cognitive state of 

interest and link it to something that we know is highly visible with fMRI: stimulus category 

information (e.g., faces and scenes). Consider an analogy: When injecting contrast dyes in 

neuroanatomy, we don’t care whether the dye stains cells green or red, so long as the colors are 

visible under the microscope and so long as the different stains we are using (to measure 

different cellular properties) have distinct colors. Likewise, when we attach cognitive states to 

faces or scenes, for example, we don’t do this because we care about faces or scenes per se; 

rather we do this because thoughts about faces and scenes are highly visible and differentiable 

with fMRI. 

 

This type of MVPA analysis has been used to study various aspects of memory and cognition. 

For example, Polyn et al. (2005) used classifiers in a free recall experiment and showed that 

category-specific patterns of activity emerged about 6 seconds prior to verbal recalls from a 

given category. In a more recent study, Zeithamova, Dominick, & Preston (2012) used classifier-

based thought tracking to explore the process of memory integration. Classifiers tracked the 

reinstatement of object and scene category information during repeated exposures to AB and BC 

stimulus pairs (e.g., frog-bucket and bucket-scene). Across subjects, the degree of reactivation of 

the C item (in this example, the scene) during AB exposures was positively correlated with later 

performance on a transitive inference memory test for the A-C association; the authors explain 

this result in terms of participants binding the (reactivated) C item to the A item at encoding. For 

other recent examples of classifier-based thought tracking, see Lewis-Peacock, Drysdale, 

Oberauer, & Postle (2012) and Detre, Natarajan, Gershman, & Norman (2013). 
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3.1.1. Cautionary notes for thought-tracking studies 

 

The ideal situation for thought-tracking is to get independent readouts of the relevant cognitive 

states, but achieving this goal can be difficult. Classifiers are opportunistic: If two categories are 

anticorrelated in the training set (e.g., all training patterns are either faces or scenes, never both) 

the classifier will learn this negative correlation, and it will come to treat the lack of scene 

activity as strong evidence for the presence of faces (see Kuhl et al., 2011, for discussion of this 

issue). Training on additional categories alleviates this problem by reducing the size of the 

negative correlation between categories at study (e.g., if there are faces, scenes, and objects, then 

the absence of faces does not perfectly predict the presence of scenes).  

 

3.2. Classifier-based information mapping 

 

A second application of MVPA is less concerned with getting a useful readout of information 

processing during individual trials, and more concerned with assessing whether a particular fine-

grained distinction is represented in a particular brain region (e.g., Pereira and Botvinick, 2011). 

This analysis is similar in concept to the mass-univariate approach, in that the goal is to 

determine which brain regions are responsive to a particular cognitive process. However, rather 

than considering how the activity in each individual voxel is predicted by a person’s (presumed) 

cognitive state, classifier-based information mapping uses information from multiple voxels 

simultaneously to predict the personʼs cognitive state.  

 

This analysis can be done using many different a priori regions of interest, or it can done using 

the searchlight method (e.g., Kriegeskorte, Goebel, Bandettini, 2006). This method consists of 

constructing a “searchlight” of voxels and sliding this searchlight all around the three-

dimensional brain volume. For each placement of the searchlight, you consider the multi-voxel 

pattern of activity within that searchlight. A classifier is trained on these patterns, and then used 

to assess how informative these patterns are about the cognitive state of interest. 

 

This approach has been used to discover new insights into cognition and the localization of 

function in the brain. For example, Soon, Brass, Heinze, & Haynes (2008) used the searchlight 
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technique to discover brain regions whose activity patterns were predictive of future decisions. 

They found that the outcome of a simple decision (to press a left or right button) could be 

decoded from prefrontal and parietal cortices up to 10 seconds prior to this decision entering 

awareness.  

 

3.2.1. Cautionary notes for classification-based information mapping 

 

An important caveat for the information-mapping approach is that above-chance decoding - 

which signals that a brain region contains information about a particular cognitive distinction - 

does not necessarily imply that this region is involved in guiding behavior  based on that 

distinction (e.g., Williams, Dang, & Kanwisher, 2007). Furthermore, information-mapping is 

opportunistic and may produce false positive results; see Todd, Nystrom, & Cohen (2013) for 

discussion of how MVPA can be more susceptible than univariate analysis to experimental 

confounds (e.g., task difficulty). Finally, multivariate decoding is not necessarily more sensitive 

than univariate decoding (Jimura and Poldrack, 2012). If the underlying signal has a coarse 

spatial scale, then univariate approaches using spatial smoothing at this scale will outperform 

MVPA. In this case, the extra parameters used to model the data in MVPA can lead to overfitting 

(Kriegeskorte et al., 2006).  

 

3.3. Pattern similarity analysis 

 

The goal of pattern similarity analysis of fMRI data (e.g., Kriegeskorte et al., 2008a) is to make 

inferences about the similarity of mental concepts based on the similarity of patterns of brain 

activity elicited by those concepts. The strength and versatility of this approach comes from the 

many different ways that similarity matrices can be computed and thus permits many types of 

comparisons. For example, Kriegeskorte et al. (2008b) showed that the similarity structure of 

neural patterns in human IT cortex (measured using fMRI) resembles the similarity structure of 

neural patterns in monkey IT cortex (measured using electrophysiology). Furthermore, they 

showed that the similarity structure of neural patterns in both human and monkey IT 

(specifically, clustering into animate vs. inanimate objects) could not be explained purely in 

terms of the low-level visual features of the stimuli. 
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Pattern similarity analysis is frequently used to study the representation of item-specific 

information — the logic here is that regions that differentiate items within a category should 

show greater pattern similarity between two instances of the same item, compared to two distinct 

items from the same category. For example, Ritchey, Wing, Labar, & Cabeza (2012) found 

evidence that encoding-retrieval similarity at the individual item level predicted memory success. 

Similarity between an item’s neural representation and the neural representations of other studied 

items has also been used to predict memory performance. For example, LaRocque et al. (2013) 

found that greater levels of across-item pattern similarity in perirhinal and parahippocampal 

cortices were associated with better recognition memory performance. 

 

3.3.1. Cautionary notes for pattern-similarity analysis 

 

As described above, classifiers compute weighted combinations of features that discriminate 

between classes; uninformative or noisy features may be effectively "filtered out" by being 

assigned small weight values.  In contrast, pattern similarity analyses do not compute weights for 

each voxel - these analyses treat all voxels as equally important.  For this reason, pattern 

similarity analyses are more susceptible to contamination from uninformative or noisy features 

than classifiers. Another concern is that pattern similarity results can be influenced by univariate 

effects. For example, imagine that a 33-voxel searchlight contains a 10-voxel subregion that 

tracks memory strength, such that all 10 of these voxels activate together for remembered (but 

not forgotten) items.  This will increase the average pattern similarity between remembered 

items.  Naively, one might interpret this effect in terms of neural representations “converging” in 

representational space, when (in fact) it is merely due to a univariate effect being superimposed 

on the searchlight region. 

 

4. New developments 

 

In this section, we will discuss recent advances in MVPA that complement and extend existing 

approaches.  
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4.1. Decoding and encoding representational spaces 

 

A major limitation of the classifier studies discussed above is that the classifiers are specialists: 

They can only discriminate between cognitive states that they were trained to discriminate, and 

the training process is highly laborious. The classifier needs to be trained on a large number of 

“snapshots” of these cognitive states (on the order of hundreds or more, depending on how subtle 

the differences are between the cognitive states) before it can discriminate between them 

reliably. You can train a classifier to discriminate between brain patterns elicited by lions and 

camels, but this classifier won’t tell you anything about the difference between oranges and 

grapes. This fact places a strong limitation on the kinds of questions that can be addressed in any 

particular study.  

 

Recently, several studies have sought to surmount this limitation by reconceptualizing the 

decoding problem: Instead of treating stimulus classes as distinct entities, these studies draw on 

the psychological literature on representation and conceptualize psychological states as points in 

a high-dimensional representational space. For example, the meaning of a particular concrete 

noun can be conceptualized as a point in a high-dimensional “meaning space”, where each 

dimension corresponds to a particular aspect of the noun’s meaning (e.g., can it be eaten? can it 

be manipulated? can it be used as shelter?) (Just, Cherkassky, Aryal, & Mitchell, 2010).  

 

Once stimuli have been placed in an n-dimensional feature space, classifiers can be trained to 

decode each feature dimension (e.g., what does the brain look like for nouns that describe edible 

vs. inedible items). These classifiers can then be applied to a novel brain pattern and used to 

decode the coordinate of that stimulus in the n-dimensional feature space. The decoded set of 

coordinates can then be compared to a “dictionary” of the meaning vectors associated with 

particular words, and - based on this - the classifier can make a guess about which word the 

person is thinking about at that moment. Alternatively, some studies have used a complementary 

encoding approach where, instead of predicting feature vectors based on brain patterns, these 

studies learned to predict brain patterns based on a combination of feature vectors: i.e., if a word 

has a particular meaning vector, what should its fMRI pattern look like? See Naselaris, Kay, 

Nishimoto, & Gallant, 2011 for further discussion of encoding and decoding models. 
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The power of this “feature space” idea is that it is usually possible to learn the neural correlates 

of particular feature dimensions based on a limited subset of stimuli; once the brain-to-feature 

mapping has been learned by a decoding model, the model can be used to decode the feature 

vector for any stimulus that resides within the representational space, regardless of whether that 

stimulus appeared at training; likewise, once the feature-to-brain mapping has been learned by an 

encoding model, it can be used to predict the brain response to any stimulus that resides within 

the representational space. For example, Mitchell et al. (2008) used this approach to decode 

which of two novel words (i.e., words not presented during classifier training) the participant 

was thinking about, with 77% accuracy. Several other studies have used this feature-based 

decomposition approach to decode the contents of visual stimuli based on brain activity (e.g., 

Kay, Naselaris, Prenger, & Gallant, 2008). 

 

Importantly, if a particular feature-space model yields above-chance decoding (or above-chance 

prediction of brain patterns in a particular region), this tells us that the model has some 

relationship to how those stimuli are coded in the brain, but there could be other models that do a 

better job. Given two competing models of neural coding, one way to discriminate between them 

is to build encoding models based on the two different “feature spaces”, and to see which one of 

them does a better job of predicting the observed fMRI activity (Serences and Saproo, 2012). 

 

4.2. Improving across-subject classification 

 

Earlier, we discussed the “data starvation” problem in MVPA analysis: The number of brain 

snapshots is typically low relative to the number of parameters being estimated by the classifier, 

resulting in a high danger of overfitting. The easiest way to combat this problem would be to 

combine data across participants. However, this will only work to our benefit if the brain patterns 

corresponding to particular cognitive states are reasonably consistent across participants - 

otherwise, the added within-class variability (resulting from across-participant differences) will 

offset the beneficial effects of having more data. The key question thus becomes: How can we 

align data across participants in a manner that minimizes across-participant variability in 

cognitive representations?   



 

Page 16 of 20 

 

The standard approach to across-subject alignment is to transform each participant’s data into a 

common template space based on anatomical landmarks, and then to combine the transformed 

data. This procedure has proved to be very useful for standard univariate fMRI analyses, but 

there have been relatively few reports of anatomical alignment alone leading to good across-

subject classification. There are two likely reasons for this: First, the transformations result in 

spatial blurring which might erase high-spatial-frequency information in the data that would 

otherwise be useful for the classifier. Also, people have different experiential histories that shape 

how concepts are represented in their brains - no amount of anatomical alignment will correct 

for such differences. 

 

To address these issues, Haxby and colleagues have developed a new across-subject alignment 

procedure called hyperalignment (Haxby et al., 2011) that aligns brains not based on anatomical 

landmarks but rather based on the functioning of those brains (i.e., aligning parts of the brain that 

behave similarly, regardless of “where” exactly in the brain these parts came from). The basic 

hyperalignment algorithm performs a Procrustes transformation that rotates, scales, and shifts 

temporal trajectories of voxels to best align datasets from different brains. Haxby and colleagues 

hyperaligned a dataset of 21 participants viewing the movie Raiders of the Lost Ark, and 

performed across-subject classification for movie segments, faces & objects, and animal species. 

They found that hyperalignment produced far superior classification performance compared to 

alignment based purely on anatomy; hyperalignment even matched the accuracy of within-

subject classification. Good classification indicates good alignment of patterns across 

participants, which suggests that adding more participants to the training set should help 

generalization even further. Therefore, hyperalignment is an extremely promising approach to 

minimizing the “data starvation” problem of MVPA. 

 

5. Conclusions 

 

Multi-voxel pattern analysis allows us to detect information in the brain that was not visible 

using previously developed methods of fMRI analysis. Getting a better handle on the 
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informational contents of a person’s brain puts researchers in a better position to test theories of 

how information-processing works in the brain, and how cognitive states shape behavior.  

 

MATLAB software for performing a classifier analysis (the Princeton Multi-Voxel 

Pattern Analysis toolbox) can be found at http://www.pni.princeton.edu/mvpa. Alternatively, 

there is a separately developed Python version of the toolbox (PyMVPA) available at 

http://neuro.debian.net. MATLAB software for performing pattern-similarity MVPA can be 

found at http://www.mrc-cbu.cam.ac.uk/methods-and-resources/toolboxes.    

 

Although MVPA offers advantages over other forms of analysis, there are limitations to what it 

can accomplish (Davis and Poldrack, 2013). Going forward, it will be beneficial to compare 

MVPA to other measurement and analysis techniques to get a better sense of which aspects of 

neural processing we can and cannot detect with MVPA. Comparisons of MVPA with univariate 

analysis (Jimura and Poldrack, 2012) and fMRI adaptation (Epstein and Morgan, 2012) suggest 

that these methods are interrogating different aspects of the neural code. It will also be useful to 

compare MVPA to neurophysiology data from human and nonhuman primates (e.g., 

Kriegeskorte et al., 2008b) to better understand the strengths and limitations of this powerful, but 

relatively recent advance in the cognitive neuroscience toolkit. 
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Figure Captions 

 

Figure 1. Observing the multi-voxel response pattern allows us to distinguish all three cognitive 

states A, B and C. Considering each voxel in isolation provides only partial discrimination.  

 

Figure 2. The two main types of multi-voxel pattern analysis of fMRI data. 
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